
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

11

Analysis of Algorithm

• Measuring algorithms in terms of the
amount of computational resources that
the algorithms requires

• Running time: How much time is taken to complete
the algorithm execution?

• Storage requirement: How much memory is
required to execute the program?

• In this course we mostly study Running Time.

2

 For algorithm analysis, we shall assume a generic
one-processor, random-access machine (RAM)
model of computation as our implementation
technology and understand that our algorithms will
be implemented as computer programs on this
machine.

 It is a standard computational model of generic processor
 It gives platform-independence: i.e. the analysis will not depend

on any specific architecture

Random-Access Machine (RAM) model

RAM Model Characteristics

1. Instructions are executed sequential, one-after
another

2. Entire memory is equally expensive to access
 All memory locations accessible in the same constant

time. (nearest or furthest)
3. No concurrent operations
4. All basic instructions take unit time
5. Constant word size

4

RAM basic operations

 Assignment operation
 Basic arithmetic operation

 +, -, *, /, MOD, floor, ceiling
 Comparison or Boolean operations.
 Branching Instructions, Subroutine Instructions

 No complicated Instructions in RAM
 Such SORT, SEARCH etc

5

Running Time

 Different Algorithms for the same problem can have
different “Running Times”

 Different inputs of the same size may result in different
running times

 Running Time Analysis is based on count of the number
of the primitive operations to be executed

 Algorithm analysis does not give us the exact running
time in seconds. As the execution time duration is
dependent on the machine to be used. We only model
Time in terms of input size.

6

Running Time Representation

 We represent running time as a function of the
input size ‘N’ as T(N)
 O(3N-7), O(2 N2), O(N3 + N2)

 ‘N’ represents input data size

 It represents different features in different
problems, image size, data size, text size etc.

 We compare “running time” of different algorithms
in terms of these Running Time Representations.

7

How is any algorithm analyzed?

 Algorithms can be analyzed in two main
ways.

Experimental analysis
Theoretical Analysis

8

Experimental analysis
 Method

 Write a program implementing the algorithm
 Run the program with inputs of varying size and composition
 Get an accurate measure of the actual running time
 Plot the results

 Short comings
 Implementing the algorithm may be difficult and Time

consuming
 Results may not be indicative of the running time on All

Inputs not included in the experiment.
 In order to compare two algorithms, the same hardware and

software environments must be used

9

Theoretical Analysis

 Method
 Uses description of the algorithm instead of an

implementation
 Characterizes running time as a mathematical

function of the input size n.
 Takes into account all possible inputs

 Best and Worst cases
 Allows us to evaluate an algorithm independent of

the hardware/software environment (uses RAM
model)

 Uses Mathematics

10

Worst-Case and Best-Case Analysis
• Worst-Case Analysis

• The maximum amount of time that an
algorithm require to solve a problem of size n.

– This gives an upper bound for the time
complexity of an algorithm.

– Normally, we try to find worst-case behavior
of an algorithm.

11

• Best-Case Analysis
• The minimum amount of time that an algorithm

require to solve a problem of size n.
– The best case behavior may be very different from

worst or average case so it is not very useful to
consider this all the time.

Design & Analysis of Algorithms 12

• Average-Case Analysis
• The average amount of time that an algorithm

require to solve a problem of size n.
– Sometimes, it is difficult to find the average-case

behavior of an algorithm.
– We have to look at all possible data organizations

of a given size n, and their distribution
probabilities.

– Worst-case analysis is more common than
average-case analysis.

13

Running Time T(N)

 Running time expression is the number of primitive
operations (steps) executed.
 We assume RAM model for this purpose and mostly

get a mathematical expression.
For example, Running Time = 8n+9

14

Running Time Analysis: Example 1

int sum(int n)
{

int partialSum;

partialSum = 0;
for (int i = 1; i <=n; i++)

partialSum += i * i * i;
return partialSum;

}

no time

1

1
1 + (N+1) + N
N * 4

Complexity function:
T(N) = 1 + 1 + (N+1) + N + N*(4) + 1 = 6N + 4
So our running time estimate is order of N i.e. O(N).

Calculate running time, counting basic operations
Input: integer n
Output: Sum of all numbers up to n

15

// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A

int Sum(int A[], int N {
int s=0;

for (int i=0; i< N; i++)

s = s + A[i];

return s;
}

1

2 3 4
5 6 7

8

1,2,8: executed only one time.
3,4,5,6,7: Once per each iteration of for loop, N iteration
Total: 5N + 3
The complexity function of the algorithm is : f(N) = 5N +3
Order of Growth is: N, Linear

16

How 5N+3 Grows with input size???

Estimated running time for different values of N:

N = 10 => 53 steps
N = 100 => 503 steps
N = 1,000 => 5003 steps
N = 1,000,000 => 5,000,003 steps

As N grows, the number of steps grow in linear
proportion to
N for this Sum function.

This represents the very basics of Algorithm
analysis. 17

Example 3:

Algorithm arrayMax(A, n) # operations

currentMax ← A[0] 2(1)
for i ← 1 to i < n do 1(1) + 1(n)

if A[i] > currentMax then 2(n − 1)

currentMax ←A[i] 2(n − 1)
i ← i+1 2(n − 1)

return currentMax 1(1)
Total 7n − 2

18

Running Time …in a simple way

 To simplify the process, the running time is
calculated on the basis of every statement
instead of primitive operations involved in
each expression.

 Because every statement i is executed in a
constant time Ci each time

 The impact of number of operations in each
statement is therefore constant is negligible.

19

Example: Simple Loop
Cost Times

i = 1; c1 1
sum = 0; c2 1
while (i <= n) { c3 n+1

i = i + 1; c4 n
sum = sum + i; c5 n

}

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
= c1+c2+c3n+c3+c4n+c5n = C6 + C7n

 The time required for this algorithm is proportional to n
20

Example: Simple If-Statement
Cost Times

if (n < 0) c1 1
val = -n c2 1

else

val = n; c3 1

Total Cost = c1 + max(c2,c3)

21

Example: Nested Loop
Cost Times

i=1; c1 1
sum = 0; c2 1
while (i <= n) { c3 n+1

j=1; c4 n
while (j <= n) { c5 n*(n+1)

sum = sum + i; c6 n*n
j = j + 1; c7 n*n

}
i = i +1; c8 n

}
Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8

 The time required for this algorithm is proportional to n2 or Order of n2

22

Order of Growth: (Growth Rate)
 It is an abstraction to ease the comparison of algorithms. In

growth rate we measure an algorithm’s time requirement as
a function of the problem size ‘n’.

 For instance, we say that for the problem size n
 Algorithm A requires 5*n2 time units
 Algorithm B requires 100*n time units.

 The most important factor to know is how quickly the
algorithm’s time requirement grows as a function of the
problem size.
 Algorithm A requires time proportional to n2.
 Algorithm B requires time proportional to n

23

 An algorithm’s proportional time requirement is known as
Growth Rate. We can compare the efficiency of two
algorithms by comparing their Growth Rates only.

 To find growth rate we will look only at the leading
term of the running time.

 We get the growth rate from T(N) by
 dropping lower-order terms.
 By ignoring the constant coefficient in the leading

term.
 So 105n2 + 108n becomes n2

 The growth rate is not affected for large n by constant
factors and lower-order terms

24

Design & Analysis of Algorithms 25

1E-1
1E+1
1E+3
1E+5
1E+7
1E+9

1E+11
1E+13
1E+15
1E+17
1E+19
1E+21
1E+23
1E+25

1E-1 1E+2 1E+5 1E+8

T(
n)

n

Quadratic

Quadratic

Linear

Linear

Examples:

Running times of
102n + 105 is a linear
function (n)

105n2 + 108n is a
quadratic function
(n2)

102n + 105

105n2 + 108n

n

n2

Design & Analysis of Algorithms 26

Common Growth Rates

Function Growth Rate Name
C Constant
log N Logarithmic
log2N Log-squared
N Linear
N log N Logarithmic
N2 Quadratic
N3 Cubic
2N Exponential

Running times for small inputs

27

Running times for moderate inputs

28

A Comparison of Growth-Rate Functions

29

Design & Analysis of Algorithms 30

	Slide Number 1
	Analysis of Algorithm
	Random-Access Machine (RAM) model
	RAM Model Characteristics
	RAM basic operations
	Running Time
	Running Time Representation
	How is any algorithm analyzed?
	Experimental analysis
	Theoretical Analysis
	Worst-Case and Best-Case Analysis
	Slide Number 12
	Slide Number 13
	Running Time T(N)
	Running Time Analysis: Example 1
	Slide Number 16
	How 5N+3 Grows with input size???
	Example 3:
	Running Time …in a simple way
	Slide Number 20
	Slide Number 21
	Example: Nested Loop
	Order of Growth: (Growth Rate)
	Slide Number 24
	Slide Number 25
	Common Growth Rates
	Slide Number 27
	Slide Number 28
	A Comparison of Growth-Rate Functions
	Slide Number 30

